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How does QC differ from classical HPC?

Reversible/coherent – irreversible/incoherent computing !!



Reversible - irreversible computing

µP
Micro
processors

Reversible classical computer
QUANTUM INCOHERENT
Ballistic
Brownian
Wave computer: 
Classically coherent

Scaled down µP, INCOH.

Quantum
device µP

Quantum computer, COHERENT,
-> Superposition, Entanglement
Atom traps, nuclear spins
Josephson Junction circuits
Semicond QDs, impurities

Quantum device µP, 
INCOHERENT
RTD, RTT, QD, SET
SFQ, Josephson flux circuits
Spin valves, Molecular Electronics

One big memory.
à All information kept all the time.
Logically reversible
”No dissipation”

Information
destroyed all the time.
Logically irreversible.
Dissipation

Logically reversible

Logically irreversible

Gate operations, algorithms

Coherent

Incoherent



HPC-QC =   Classical computer     +      Q-accelerator



What is the relation between HPC and QC
for the foreseeable future?



IBM
Google
Rigetti
Alibaba
QuTech
(Delft) 
………..
-----------
Innsbruck
IonQ
Sandia
Honeywell
Amazon
…….

Superconducting
qubits
Cloud service

Ion trap qubits
Cloud service

Semiconductor
qubits
Cloud service

Photonic qubits
Cloud service

QuTech
(Delft) 
………..

-----------
Not yet ?
…….





Sweden’s quantum technology programme
Wallenberg Centre for Quantum Technologies

WACQT, 2018-2029 MC2, Chalmers U of Tech, Sweden

Chalmers WACQT - mästare

MC2
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What about Europe ….. ??
EU Flagship project 2019-2021 (…2028)

10 groups – incl. Chalmers

Quantum processor with 50-100 
qubits in 3 (!!) years …. 

(Chalmers leading 2 Work Pckages)

http://www.opensuperq.eu

Cryostat
≈ 10 mK

12 years, 150 M€

25q Transmon chip under testinghttps://www.chalmers.se/en/centres/wacqt/Pages/default.aspx

Mission: to build a quantum processor 
with 100+ superconducting qubits by 2025



NordiQuEst HPC-QC ecosystem

LUMI pre-exascale HPC in Kajaani

2022-2025

According to plans:
25 qubits by 2023
50 qubits by 2025

Accessible for users via 
a LUMI portal



EuroHPC JU

LUMI-Q ….. ? (in preparation)
(CSC, VTT, Chalmers, NeIC, IQM …)

Horizon Europe

OpenSuperQ Plus !

FPA Roadmap 2022-2029:
Chalmers, VTT, CSC, IQM, ….

SGA1 2023-2025 (100q)

SGA2 2026-2029 (1000q)



Why is quantum computing interesting?
Because of hard future limits for classical 
High-Performance Computing (HPC):

Setting the scene

• End of Moore's Law for semiconductor component scaling
• Scaling of classical computational power will hit hard limits (ultimately -

electrical power)



Computers:
Big computers and internet servers are built from many parallel PC-type 
processors
1 processor typically consumes about ~ 100 W
The computation itself (bit flops) consumes about
1V x 3 GHz x 10^10 transistors ≈ 5 W
The rest is losses dissipated as heat.
20 000 processors x 100 W à 2 106 W = 2 MW 
à Needs a dedicated power station!
One is planning for 1000 times more powerful – exaflop - computers à 109 W 
= 1000 MW

à Requires a dedicated nuclear power station!!

POWER



Internet-of-Things (IoT): a rough estimate
1010 people (10 x Kina today)
100 W/person at home (only for IoT)
à 1012 Watt = 1000 nuclear power reactors
Moreover: every internet server will need a dedicated nuclear power reactor!!
Suppose the world will need 1000 IoT servers
à 2 000 nuclear power reactors needed for internet/IoT
à Information processing in the near future will need very big electric
power!
à We need exponential speed-up to be able to solve (approximately!) hard 
problems with finite resources (time, memory).
à We may need new computational paradigms à Quantum computing?

POWER



The original quantum “killer application”: Shor’s algorithm for factorisation (1995)

Today, the typical killer applications are  “use cases”:
• Quantum Chemistry – designing enzymes and catalysers

• Materials science – describing strong electron correlations

• Optimization - logistics, scheduling, ...

àThere is no lack of algorithms and applications.

àBut there is lack (absence!) of large-scale coherent quantum processors



Biological catalyzing enzyme

Nitrogenase protein:  iron molybdenum cofactor FeMoco

Elucidating reaction mechanisms on quantum computers
M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer
PNAS 114, 7555-7560 (2017)

[FeS]n

The killer application today



Quantum computers offer, in principle, 
exponential speed-up for certain classes of hard problems

TTS for a HPC:
Grows exponentially

TTS for a quantum 
computer: 
Grows 
linearly/polynomiallyproblem size

time

Quantum Advantage

No Quantum Advantage



Complexity 
classes

P
BQP
QMA

Hard for QC

Hard for HPC 
QC efficient

HPC efficient



Complexity classes

QTM
Quantum
computer

DTM
Deterministic 
Turing Machine

NTM
Non-deterministic 
Turing Machine

Easy for classical
computer

Hard for 
classical
computer

Hard for
ordinary 
quantum
computer

Shor



Complexity classes – Quantum Chemistry

QTM
Quantum
computer

DTM
Deterministic 
Turing Machine

NTM
Non-deterministic 
Turing Machine

Easy for classical
computer

Hard for 
classical
computer

Quantum 
Chemistry



The workings of a quantum computer

a1 |00..000> +
a2 |00..001> +
a3 |00..010> +
a4 |00..011> +
…………….. +
an-1 |11..110> +
an |11..111> n=2N

Superposition of 2N registers
of N-qubit registers

qubit = 
2-level system

|0> , |1> 

a|0> + b|1>

vector on the unit sphere



Rotation1q

2q

3q

NOT, Hadamard

C-Rotation

CNOT
CPHASE

Super-
position
of 2N

states;
Not 
possible 
classically
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Quantum GATE operations 

Rotation 

Generic quantum gate 

1q 

2q 

3q 

NOT,#Hadamard 

C3Rota8on 
Opera@ng.with.U(t,t0)+results.
in.transi8ons#between#basis#
states.and.changes#of#the#
8me#coefficients#
! Wave#crea8on#and#wave#
propaga8on#in#the#PHYSICAL#
system:#
! #charge,#spin,#EM3fields,#…#

CNOT 
CPHASE 

Super3#
posi8on#
of#2N##
states;#
Not##

possible##
classically#

 

Series expansion à
Quantum gate circuit

Qubit 
(memory)
register

Quantum gates and states: superposition and entanglement

Reversible
gates

|00..000> +
|00..001> +
|00..010> +
|00..011> +
…..…….. +
|11..110> +
|11..111> =
|>|> … |>

Product state
Not entangled
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The series of terms generates in principle all possible configurations for FCI, producing all possible 
ground and excited state correlations. The terms shown generate single (S) and double (D) excitations 
and gives the parametrised UCCSD trial-state approximation that we are using. The coefficients tpq and 
tpqrs are variational parameters determining the weight of the excited configuration. 
 
The UCCSD trial-state with fermionic operators must now be mapped onto qubit spin operators. 
Common transformations are Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity, all designed to 
impose the anticommutation rules. The original UCCSD exponential is then expanded into exponentials 
of large numbers of products of Paul pin-operators acting on qubits. The parametrised initial trial state 
is then constructed through entangled quantum circuits: combinations of parametrised 1q-rotation 
gates and entangling CNOT gates. The size of the quantum circuit can finally be reduced by qubit 
reduction schemes and qubit tapering [7]. All this results in a state vector for the trial state. 
 
The fermionic operators in the Hamiltonian must also be expanded in products of Pauli spin-operators. 
The expectation value can then be calculated in two ways: (1) State-vector approach: direct calculation 
of <∑Hi> by matrix operations (QISKit state-vector backend); (2) Measurement approach: generating 
an ensemble of identical trial states and measuring the Pauli operators of the Hamiltonian terms Hi 
(Fig.1) (QISKit qasm HPC backend; or experimental q-HW backends).   
 

       
(a)             (b) 

Figure 1: The Variational Quantum Eigensolver (VQE) (1(a) [8]; 1(b) [Aspuru-Guzik et al.]). Figure 1(b) emphasises 
that there are two loops for updating the variational parameters: (i) an “internal” loop that optimises the 
variational (UCCSD) ansatz, and (ii) an “external” loop that minimises the energy. 
 
The QISKit gate lists involve the general parametrised Pauli operators for 1q-operations plus CNOT 
(controlled-X, cx), forming a universal set of quantum gate operations (see the Appendix).  
 
We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State

QPU

〈H1〉

〈H2〉

〈H3〉

〈HN〉

〈H1〉
+

+

+

+

〈H2〉

〈H3〉

〈HN〉

Quantum expectation estimation

Quantum variational eigensolver
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Quantum module 2

Quantum module 3

Quantum module N

Adjust the parameters for the next input state

Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5213 ARTICLE

NATURE COMMUNICATIONS | 5:4213 | DOI: 10.1038/ncomms5213 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.
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Fig. 2 The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle. Gate 
operations on the QHW creates a quantum state in the QHW register, described in terms of a state vector. 
Repeated application of rotation (Pauli) operators and subsequent measurements (state tomography) produces 
a distribution of energies that that are used for calculating the expectation value of the Hamiltonian – the 
energy.  

 
Figure 3 exemplifies the VQE-method in the simple case of the H2 molecule [3]. 

 

 
 

Fig. 3. The VQE exemplified for H2 molecule. The fermionic operators in the Hamiltonian are transformed into 
products of Pauli operators that can operate on qubits while conserving the anticommutation rules (Jordan-

Wigner (JW); Bravyi-Kitaev (BK); Parity). The trial function |j(q)> is constructed through a sequence of 
parametrized 1q rotations and entangling 2q gates applied to a suitable initial reference state. The Unitary 
Coupled Cluster Singles and Doubles (UCCSD) approximation creates the trial function via double excitations 
from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron pair-correlation effects. The 

UCCSD-generating quantum circuit is given by a CNOT, an Rz(q) rotation, and another CNOT. 
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Hybrid classical quantum optimisatinon

Machine learning

Optimisation
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Variational quantum eigensolver - VQE

Rayleigh-Ritz = VQE

from exponentially costly precompilation [33]. When
implemented using a unitary coupled cluster (UCC) ansatz,
VQE cannot be efficiently simulated classically, and
empirical evidence suggests that answers are accurate
enough to predict chemical rates [19–23]. Because VQE
only requires short state preparation and measurement
sequences, it has been suggested that classically intractable
computations might be possible using VQE without the
overhead of error correction [22,23]. Our experiments
substantiate this notion; the robustness of the VQE to
systematic device errors allows the experiment to achieve
chemical accuracy.
Our second experiment realizes the original algorithm

for the quantum simulation of chemistry, introduced in
Ref. [2]. This approach involves Trotterized simulation [34]
and the quantum phase estimation algorithm (PEA) [35].
We experimentally perform this entire algorithm, including
both key components, for the first time. While PEA has
asymptotically better scaling in terms of precision than
VQE, long and coherent gate sequences are required for its
accurate implementation.
The phase estimation component of the canonical

quantum chemistry algorithm has been demonstrated in
a photonic system [36], a nuclear magnetic resonance
system [37], and a nitrogen-vacancy center system [38].
While all three experiments obtained molecular energies to
incredibly high precision, none of the experiments imple-
mented the propagator in a scalable fashion (e.g., using
Trotterization), as doing so requires long coherent evolu-
tions. Furthermore, none of these experiments used more
than a single qubit or qutrit to represent the entire molecule.
This was possible due to the use of the configuration basis,
which is not scalable but renders the experimental chal-
lenge much easier. Furthermore, all of these implementa-
tions applied the logic gates with a single, totally controlled
pulse, as opposed to compiling the algorithm to a universal
set of gates as we do.
There have been two previous experimental demonstra-

tions of VQE, first in a photonic system [19] and later in an
ion trap [39]. Both experiments validated the variational
approach, and the latter implemented an ansatz based on
unitary coupled cluster. All prior experiments focused
on either molecular hydrogen [36,37] or helium hydride
[19,38,39], but none of these prior experiments employed a
scalable qubit representation such as second quantization.
Instead, all five prior experiments represent the Hamiltonian
in a configuration basis that cannot be efficiently decom-
posed as a sum of local Hamiltonians, and then exponentiate
this exponentially large matrix as a classical preprocessing
step [19,36–39].
Until this work, important aspects of scalable chemistry

simulation such as the Jordan-Wigner transformation [40]
or the Bravyi-Kitaev transformation [41,42] had never been
used to represent a molecule in an experiment; however,
prior experiments such as Ref. [7] have previously used the

Jordan-Wigner representation to simulate fermions on a
lattice. In both experiments presented here, we simulate the
dissociation of molecular hydrogen in the minimal basis
of Hartree-Fock orbitals, represented using the Bravyi-
Kitaev transformation of the second quantized molecular
Hamiltonian [17]. As shown in Appendix A, the molecular
hydrogen Hamiltonian can be scalably written as

H ¼ g01þ g1Z0 þ g2Z1 þ g3Z0Z1 þ g4Y0Y1 þ g5X0X1;

ð1Þ

where fXi; Zi; Yig denote Pauli matrices acting on the ith
qubit and the real scalars fgγg are efficiently computable
functions of the hydrogen-hydrogen bond length R.
The ground-state energy of Eq. (1) as a function of R

defines an energy surface. Such energy surfaces are used to
compute chemical reaction rates which are exponentially
sensitive to changes in energy. If accurate energy surfaces
are obtained, one can use established methods such as
classical Monte Carlo or molecular dynamics simulations
to obtain accurate free energies, which provide the rates
directly via the Erying equation [43]. At room temperature,
a relative error in energy of 1.6 × 10−3 hartree (1 kcal/mol
or 0.043 eV) translates to a chemical rate that differs
from the true value by an order of magnitude; therefore,
1.6 × 10−3 hartree is known as “chemical accuracy” [43].
Our goal, then, is to compute the lowest energy eigen-
values of Eq. (1) as a function of R, to within chemical
accuracy.

II. VARIATIONAL QUANTUM EIGENSOLVER

Many popular classical approximation methods for
the electronic structure problem involve optimizing a
parametrized guess wave function (known as an “ansatz”)
according to the variational principle [43]. If we para-
metrize an ansatz jφð~θÞi by the vector ~θ, then the variational
principle holds that

hφð~θÞjHjφð~θÞi
hφð~θÞjφð~θÞi

≥ E0; ð2Þ

where E0 is the smallest eigenvalue of the Hamiltonian H.
Accordingly, E0 can be estimated by selecting the param-
eters ~θ that minimize the left-hand side of Eq. (2).
While the ground-state wave function is likely to be in

superposition over an exponential number of states in the
basis of molecular orbitals, most classical approaches
restrict the ansatz to the support of polynomially many
basis elements due to memory limitations. However,
quantum circuits can prepare entangled states, which are
not known to be efficiently representable classically. In
VQE, the state jφð~θÞi is parametrized by the action of a
quantum circuit Uð~θÞ on an initial state jϕi; i.e.,

P. J. J. O’MALLEY et al. PHYS. REV. X 6, 031007 (2016)

031007-2

jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.

Because our experiment requires only a single varia-
tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.

SCALABLE QUANTUM SIMULATION OF MOLECULAR ENERGIES PHYS. REV. X 6, 031007 (2016)

031007-3

H2

UCCSD trial state function:

Review

17

frequency-tuning squid by a single JJ. This is also an important 
design for arrays of 3D transmon qubits where direct access 
for tuning individual qubits may be dif!cult or impossible.

The generic approach for coupling non-linear oscillators 
is to use electromagnetic driving !elds to induce parametric 
coupling with tunable strength by creating a spectrum of side-
bands bridging frequency gaps. In this way it is possible to 
entangle superconducting qubits with different frequencies 
using (i) !xed linear couplings, (ii) only microwave con-
trol signals, and (iii) tunable effective interaction strengths. 
Recently these methods have been applied experimentally 
through a variety of schemes based on two different princi-
ples: (i) driving qubits, and (ii) driving coupling resonators, 
e.g. a tunable bus.

6.5.1. Driving qubits.

Cross resonance (CR) 2q gates.  The CR scheme [255–
259] exploits already present nonlinearities to achieve tunable 
coupling, circumventing the need for nonlinear coupling ele-
ments. The CR two-qubit gate scheme irradiates one of the 
qubits at the transition frequency of the other qubit. In the 
presence of this cross-resonant microwave drive, an effec-
tive coupling emerges between the two qubits whose strength 
increases linearly with the ratio (drive amplitude)/(difference 
frequency).

The CR-coupling of two qubits, Q1 and Q2, can be under-
stood in the dressed state picture of quantum optics [255, 
256]. Under CR driving, the central transition at the irradia-
tion frequency of the driven dressed Q1 system is matched to 
the bare transition of the undriven Q2. One thus creates a reso-
nance between the central feature of the Mollow triplet on Q1 
and the bare transition of Q2. The tunability of the effective 
coupling strength G results from the evolution of the dressed 
Q1 eigenstates as the !eld amplitude F is adjusted [255, 256]:

Ĥeff = g(F) σz1 σx2, (53)

which is related to the CNOT gate by one additional local π/2 
rotation of each qubit.

In addition to the CR scheme, one approach is to create 
a microwave-activated conditional-phase gate (MAP) [260] 
based on driving the |03〉 and |12〉 transmon states into reso-
nance. A general problem with driving qubits is that the cou-
plings may depend sensitively on the qubit level structure. For 
transmon qubits the CR scheme is limited by the weak anhar-
monicity of the transmon, and the MAP scheme employs 
speci!c higher excited states of the transmon. These schemes 
may therefore be challenging to scale up to many qubits.

6.5.2. Driving a tunable bus. Attaching a SQUID to the end 
of a coplanar wave-guide resonator (CPW) makes it possible 
to vary the boundary condition (effective length) and cre-
ate a "ux-tunable resonator [261, 262] and to couple qubits 
[263, 264]. In [263], !xed-frequency qubits with different fre-
quencies were coupled by successively bringing each qubit 
quasi-statically in and out of resonance with the tunable CPW, 
effectively creating multi-qubit gates. In [261, 264], the CPW 
was rapidly tuned (chirped) to create interference and beating 
of microwave emission, which in principle could dynamically 
couple qubits [264]. Alternatively, one can drive the resonator 
at high frequency to create sideband structure and dynamic 
parametric coupling between qubits. This is presently at the 
focus of extensive and promising research [141, 221, 265–
267], potentially providing multi-qubit gate architectures for 
scaled-up systems. A recent proposal is based on the Dynami-
cal Casimir Effect [267]: A SQUID is then connected to the 
midpoint of a CPW resonator that is connected to transmon 
qubits at both ends, varying the coupling between the two 
halves by "ux tuning. Driving the SQUID at microwave fre-
quencies emits pair of photons that can entangle the qubits 
[267].

Resonator-induced phase gate (RIP). In the resonator-
induced phase gate (RIP) scheme [141, 221, 265] !xed-
frequency transmons are statically coupled to the same bus 
resonator driven at the difference frequency of two qubits.

In a two 2D-transmon setup [221], parametrically oscillat-
ing a "ux-tunable ‘bus qubit’ (similar to a combination of the 

Figure 13. Circuits for implementation of (a) CPHASE; (b) CNOT; (c) Ctrl-Z(θ), θ arbitrary; (d) basic circuit for phase estimation using an 
ancilla (top qubit); (e) the U = exp[−i θ2σz ⊗ σz] operator; (f) a controlled version of (e) for controlled time evolution and phase estimation 
(top qubit).
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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stochastic calculus concerns generalisation of the Langevin 
equation to quantum systems. Because of the relation to stochas-
tic processes one has adopted the term ‘stoquastic’ to refer to 
quantum Hamiltonians where all off-diagonal matrix elements 
in the standard basis are real and non-positive [401]. Stoquastic 
Hamiltonians are very common in physics. Among spin-1/2 
models, the well-studied ferromagnetic Heisenberg models and 
the quantum transverse Ising model [79] are stoquastic. Another 
example is a Heisenberg antiferromagnet on a cubic lattice.

Barends et  al chose to investigate a stoquastic frustrated 
Ising Hamiltonian having random local X and Z "elds, and 
random zz couplings. Non-stoquastic problems have addi-
tional random xx couplings. The results show that the system 
can "nd the ground states of both stoquastic and non-stoquas-
tic Hamiltonians with comparable performance.

9.6. Digital quantum simulation of fermionic models

Computational physics, chemistry and materials science deal 
with the structure and dynamics of electronic systems: atoms, 
molecules, solids, liquids, soft matter, etc. To describe these 
systems one needs the full machinery of quantum many-body 
theory involving fermionic and bosonic particles and exci-
tations. So far a we have been working with 2-level (spin) 
systems coupled to bosonic modes. However, to describe 
electronic systems, the fermionic anti-commutation rules have 
to be built in. One way to do this was invented a long time 
ago in the form of the Jordan–Wigner (JW) transformation 

[402]. One then works in the occupation-number representa-
tion and keeps track of parity under permutations via the the 
anti- commutation rules of a set of auxiliary Pauli σ operators 
embedded in the fermionic creation and annihilation opera-
tors. In this way the number of σ operators scales as O(n), i.e. 
as the number of qubits.

Bravyi and Kitaev [403] derived an alternative (BK) trans-
formation, using the qubits for storing parities rather than 
occupation numbers. This scheme also maps the fermionic 
operators on products of Pauli σ operators. One advantage, 
however, is that the number of σ operators scales as O(logn), 
which will be important for simulation of large systems that 
require large numbers of qubits.

These methods have been developed theoretically and 
simulated classically over the last 15 years [390, 404–409], 
but never explored experimentally, until now. The "rst exper-
imental applications ever, with superconducting circuits, 
have recently been published, implementing digital simula-
tion of the Fermi–Hubbard model [36] and the ground state 
binding curve of the hydrogen molecule, H2 [38] (see further 
section 10.1.4).

For illustration of the approach to an elementary fermonic 
many-body system, consider a closed-shell atom or molecule. 
The general second-quantised Hamiltonian is given by:

Ĥ =
∑

pq

hpqc+p cq +
1
2

∑

pqrs

hpqrsc+p c+q crcs

 
(96)

where the "rst term describes the single-particle kinetic and 
potential energies, and the second term the 2-body Coulomb 
interaction. The indices refer to the set of basis orbitals (fermi-
onic modes) used to expand the Hamiltonian.

The simplest possible case is the ground state of a 2-elec-
tron system with a minimal basis of 2 states: a He atom with 
1s ↑ 1s ↓, or a H2 molecule with 1σ ↑ 1σ ↓. The Hartree 
Hamiltonian is then given by:

Ĥ = h1c+1 c1 + h2c+2 c2 + V12c+1 c1c+2 c2 (97)

Figure 26. (a) Two-spin XY model: Circuit diagram implementing the ÛXY(t) gate for a certain time t = τ . (b) Two-spin Heisenberg 
(XYZ) model: Circuit diagram implementing the ÛXYZ(t) gate (equation (90)) for a certain time t = τ . (c) Time evolution ÛXY(t) of the 
two-spin XY model: Experimentally determined coordinates of the Bloch vectors. Red (Q1) and blue (Q2) points are compared to the ideal 
paths shown as dashed lines in the XY model. (d) describes the same thing for the Heisenberg (XYZ) model. Reproduced from [192].  
CC BY 3.0.

Figure 27. Protocol to decompose and simulate Ising XY spin 
dynamics in a homogeneous transverse magnetic "eld. Reproduced 
from [192]. CC BY 3.0.
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with expectation value:

〈Ĥ〉 =
∑

iα

hiα〈σiα〉+
∑

iα,jβ

hiα,jβ〈σiασjβ〉+ .... (111)

The coef!cients are determined using a classical quantum 
chemistry package.

The expectation value of a tensor product 〈σiασjβσkγ .....〉 
of an arbitrary number of Pauli operators can be estimated 
by local measurement of each qubit [54], independent meas-
urements that can be performed in parallel. The advantage of 
this approach [456] is then that the coherence time to make 
a single measurement after preparing the state is O(1). The 
disadvantage relative to the PEA is that the scaling in the total 
number of operations as a function of the desired precision 
is quadratically worse [456]. The scaling will also re"ect the 
number of state preparation repetitions required, whereas in 
PEA the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the 
coherence time requirement, while maintaining an exponen-
tial advantage over the classical case by adding only a polyno-
mial number of repetitions with respect to QPE [456].

10.1.2. Quantum variational eigensolver. The quantum vari-
ational eigensolver (QVE) [456] is based on the Ritz varia-
tional principle, !nding the minimum of the expectation value 
of the Hamiltonian under variation of the trial state function: 
(i) prepare the trial state |ψ〉; (ii) compute the Rayleigh–Ritz 
quotient 〈Hi〉 = 〈ψ|Ĥi|ψ〉/〈ψ||ψ〉 of all the terms in the Ham-
iltonian using the QEE as a subroutine; (iii) calculate 

∑
i 〈Hi〉; 

(iv) compare the resulting energy with the previous runs and 
feed back new parameters for the trial state. Note that the only 
step that is quantum is step (iii)—the other steps are prepared 
using a classical computer.

The issue now concerns state preparation. One example 
of a quantum state parameterised by a polynomial number 
of parameters for which there is no known ef!cient classical 
implementation is the unitary coupled cluster ansatz (UCC) 
[394, 456]

|ψ〉 = eT−T†
|ψref〉 (112)

where |ψref〉 is some reference state, usually the Hartree Fock 
ground state, and T is the cluster operator for an N electron 
system, de!ned by operators

T = T1 + T2 + T3 + .... + TN (113)

producing 1, 2, 3, ...., N  electron-hole pairs from the N-electron 
reference state. Explicity for T1 and T2:

T1 =
∑

pq

tpqc+p cq (114)

T2 =
∑

pqrs

tpqrsc+p c+q crcs (115)

The series in equations (114) and (115) generate in principle 
all possible con!gurations for FCI, producing all possible 
ground and excited state correlations.

In real molecules, often a limited number of these correla-
tions produce the bulk of the interaction energy due to the 

Coulomb repulsion. The problem is that to achieve the acc-
uracy needed for describing realistic molecular chemical 
energy surfaces and accurately predicting chemical reaction 
paths, a large number of small correlations are needed to build 
up to the !nal accurate result. This is QMA-hard, i.e. intrac-
table for both classical and quantum computers. It therefore 
becomes a question of useful approximations. Again, note 
here the recent work by Carleo and Troyer [363].

In the case of the two-electron H2 and He–H+ molecules, 
N = 2. The cluster operators are then limited to T1 and T2 in 
equation (112) and it is possible to apply the full machinery 
with suitable approximations and to obtain chemical accuracy.

10.1.3. H–H ground-state energy curve. We will now describe 
an experimental application of the QVE to the problem of the 
ground-state energy curve of the hydrogen molecule [38].

For a 2-electron system, the Hamiltonian reduces to

Ĥ =
∑

iα

hiα(R) σiα +
∑

iα,jβ

hiα,jβ(R) σiασjβ (116)

or equivalently

Ĥ = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (117)

where the set of parameters gi = gi(R) depends on the H–H 
distance and is obtained from the expectation values of the 
Hamiltonian terms evaluated on a classical computer using 
the basis (reference) states.

We discussed quantum state preparation in general in sec-
tion 9, and the coupled-cluster approach above. In the QVE, 
the state |ψ(θ)〉 is parameterised by the action of a quantum 
circuit Û(θ) on an initial state |ψref〉, i.e. |ψ(θ)〉 = Û(θ)|ψref〉. 
Even if |ψ(θ)〉 is a simple product state and Û(θ) is a very 
shallow circuit, |ψref〉 can contain complex many-body cor-
relations and span an exponential number of standard basis 
states.

The unitary coupled cluster approach states that the ground 
state of equation (112) can be expressed as

|ψ(θ)〉 = Û(θ)|ψHF〉 = e−iθX0Y1 |01〉 (118)

where |01〉 is the Hartree–Fock (mean-!eld) state of molecu-
lar hydrogen in the representation of equation (112). The gate 
model circuit that performs this unitary mapping is shown in 
the software section of !gure 29.

The total bonding energy curve in !gure 30 demonstrates 
chemical accuracy (better than 10−3 hartree), which is a very 
important result. In contrast, the calculation using the full 
canonical protocol of trotterisation plus quantum phase esti-
mation (PEA) turns out much less accurate, amply demon-
strating that the fully quantum approach is very demanding on 
coherence time.

10.1.4. He-H+ ground-state energy curve. The QVE was 
originally applied to the helium-hydride cation He–H+ prob-
lem on a 2-qubit photonic processor by Peruzzo et al [456] . 
Recently, Wang et al [473] applied the IPEA to the He–H+ 
problem using a solid-state quantum register realised in a 
nitrogen-vacancy centre (NVC) in diamond, reporting an 
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|cS that minimizes

hc j H j ci
hc j ci : ð3Þ

By varying the experimental parameters in the preparation of
|cS and computing the Rayleigh–Ritz quotient using QEE as
a subroutine in a classical minimization, one may prepare
unknown eigenvectors. At the termination of the algorithm, a
simple prescription for the reconstruction of the eigenvector is
stored in the final set of experimental parameters that define |cS.

If a quantum state is characterized by an exponentially large
number of parameters, it cannot be prepared with a polynomial
number of operations. The set of efficiently preparable states are
therefore characterized by polynomially many parameters, and
we choose a particular set of ansatz states of this type. Under
these conditions, a classical search algorithm on the experimental
parameters that define |cS needs only explore a polynomial
number of dimensions—a requirement for the search to be
efficient. One example of a quantum state parameterized by a
polynomial number of parameters for which there is no known
efficient classical implementation is the unitary coupled cluster
ansatz29

j Ci ¼ eT $Tw j Firef : ð4Þ

where |FSref is some reference state, usually the Hartree Fock
ground state, and T is the cluster operator for an N electron
system, defined by

T ¼ T1þT2þT3þ :::þTN ; ð5Þ

where

T1 ¼
X

pr

tr
pâwpâr ð6Þ

T2 ¼
X

pqrs

trs
pqâwpâwqârâs ð7Þ

and higher-order terms follow logically. It is clear that by
construction the operator (T$Tw) is anti-hermitian,
and exponentiation maps it to a unitary operator U ¼ eðT $TT Þ.
For any fixed excitation level k, the reduced cluster operator is

written as

TðkÞ ¼
Xk

i¼1

Ti: ð8Þ

In general no efficient implementation of this ansatz has yet been
developed for a classical computer, even for low-order cluster
operators, due to the non-truncation of the BCH series29.
However, this state may be prepared efficiently on a quantum
device. The reduced anti-hermitian cluster operator (T(k)$T(k)w)
is the sum of a polynomial number of terms—namely, it contains
a number of terms O(Nk(M$N)k), where M is the number of
single-particle orbitals. By defining an effective Hermitian
Hamiltonian H¼ i(T(k)$T(k)w) and performing the Jordan–
Wigner transformation to reach a Hamiltonian that acts on the
space of qubits, ~H, we are left with a Hamiltonian that is a sum of
polynomially many products of Pauli operators. The problem
then reduces to the quantum simulation of this effective
Hamiltonian, ~H, which can be done in polynomial time using
the procedure outlined by Ortiz et al.23 We note that while this
state preparation procedure utilizes tools from quantum
simulation, the total effective time of evolution is fixed by the
expansion coefficients trs

pq. This is in contrast to the normal
difficulties encountered in QPE, where simulations must be
carried out for times that are exponential in the desired bits of
precision.

While there is currently no known efficient classical algorithm
based on these ansatz states, non-unitary coupled cluster ansatz is
sometimes referred to as the ‘gold standard of quantum
chemistry’ as it is the standard of accuracy to which other
methods in quantum chemistry are often compared. The unitary
version of this ansatz is thought to yield superior results to even
this ‘gold standard’29.

Prototype demonstration. We have implemented the QPU using
integrated quantum photonics technology30. Our device, shown
schematically in Fig. 2, is a reconfigurable waveguide chip that
can prepare and measure arbitrary two-bit pure states using
several single-qubit rotations and one two-qubit entangling gate.
The state is path-encoded using photon pairs generated via a
spontaneous parametric downconversion process. State
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Figure 1 | Architecture of the quantum-variational eigensolver. In QEE, quantum states that have been previously prepared are fed into the quantum
modules, which compute /HiS, where Hi is any given term in the sum defining H. The results are passed to the CPU, which computes /HS. In the
quantum variational eigensolver, the classical minimization algorithm, run on the CPU, takes /HS and determines the new state parameters, which are
then fed back to the QPU.
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will explore implementations of this algorithm on the OpenSuperQ platform in combination with DMFT (Y1) and apply it to 
molecular materials. (Y2) 

USAAR in the process of adapting its existing methodology of variational cluster algorithms on a 
quantum computer – which are a generalization of DMFT – to concrete examples and for applications 
in concrete hardware. USAAR has also developed a roadmap to simulate systems capable of the 
fractional quantum Hall effect on quantum computers. See Deliverable 1.10 for details. FZJ plans 
solving the Hubbard model with JUQCS. 
 
 
Task 1.2 Benchmarking use-cases for machine learning and optimization 
 
1.2.1: Machine learning and AI applications: 

DoA: CHALMERS and UPV/ EHU will develop and benchmark QAOA use-cases on classical computers (i) to explore the 
performance of different number of steps in the QAOA and (ii) to investigate the scaling properties of the chosen use-cases, 
for an error free implementation, as well as for realistic error models from the hardware-based model (1.3.1). The result 
will be an optimized gate sequence that will be run by the experimental partners on the OpenSuperQ HW, as well as a 
report analyzing the quantum advantage in the cases considered. 

Flight Optimization using QAOA 

In collaboration with the Boeing subsidiary Jeppesen, CHALMERS has investigated the performance 
of the Quantum Approximate Optimization Algorithm (QAOA) for optimizing small but realistic 
instances derived from real world data of logistic scheduling relevant to airlines. Airlines today are 
faced with a number of large scale scheduling problems. One such problem is the tail assignment 
problem, which is the task of assigning individual aircraft (identified by the number on its tail fin) to a 
given set of flights, minimizing the overall cost.  

The QAOA is a variational hybrid quantum-classical algorithm recently introduced and likely to run on 
near-term quantum devices.  

 

FIGure 2:  Schematic representation of the QAOA. The quantum processor prepares the variational state, 
depending on variational parameters. The variational parameters (⃗γ, β⃗) are optimized in a closed loop using a 
classical optimizer.  

Jeppesen reduced real instances obtained from their customers to instances with 8, 15 and 25 
decision variables, which can be run on a quantum computer with 8, 15 and 25 qubits respectively. 
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FIG. 1. Schematic representation of the QAOA. The quan-
tum processor prepares the variational state, depending on
variational parameters. The variational parameters (~�, ~�) are
optimized in a closed loop using a classical optimizer.

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ⌘

P
n

i=1 �̂
x

i
is a so called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
di↵erent variational parameters ~� = (�1, . . . , �p) with

�i 2 [0, 2⇡] if ĤC has integer-valued eigenvalues, and
~� = (�1, . . . ,�p) with �i 2 [0,⇡], such that the final vari-
ational state obtained is:

| p(~�, ~�)i ⌘ V̂ (�p)Û(�p) . . . V̂ (�1)Û(�1) |+i⌦n
. (17)

The parametrized quantum gates are then optimized in
a closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the opti-
mal variational parameters that minimize the expecta-
tion value of the cost Hamiltonian

(~�⇤, ~�⇤) = argmin
~�,~�

Ep(~�, ~�), (18)

where

Ep(~�, ~�) ⌘ h p(~�, ~�)|ĤC | p(~�, ~�)i . (19)

Note that this requires in principle multiple state prepa-
rations and measurements. Once the best possible varia-
tional parameters are found, they are used to create the
state | p(~�⇤, ~�⇤)i, using the quantum processor for the
state preparation. Then, one samples from this state by
measuring in the computational basis, and the cost of
the configuration obtained in the measurement, given by
Eq. (8), is evaluated. The latter step is classically e�-
cient.

The success probability is defined as the probability
of finding the qubits in their ground state configuration
|xsoli when performing a single shot measurement of the

| p(~�, ~�)i state, i.e.

Fp(~�, ~�) ⌘ | hxsol| p(~�, ~�)i |2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask:
what is the probability of having observed the solution at
least once after m repeated measurements? The answer
is given by:

1� (1� Fp(~�, ~�))
m
. (21)

Thus to have the probability (1 � ") of observing the
solution, m has to be

m >
log "

log (1� Fp(~�, ~�))
. (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9 % of observing Head at least
once, one has to flip and “measure” the coin 10 times.

In what follows, we are going to apply this paradigm to
solve the Exact Cover problem, by using the correspond-
ing cost Hamiltonian, expressed by Eq. (8) with Jij and
hi given by Eq. (12) and (13) respectively.

IV. RESULTS

We will examine instances for three di↵erent problem
sizes of the tail assignment problem given in Table I, cor-
responding to 8, 15 and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15 and 25 qubits
respectively.

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance
8 77 10 1
15 77 9 1
25 278 10 1

A. Energy landscape

Firstly, we can reduce the search space by noting that
the eigenvalues of both Hamiltonians ĤC and ĤM are
integer-valued. As a consequence, the expectation value
Eq. (19) has even-symmetry, i.e. Ep(~�, ~�) = Ep(�~�,�~�).
This symmetry allow us to restrict the domain of each �i
to �i 2 [0,⇡].

To highlight the di�culty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(�,�), as well as the corresponding
success probability F1(�,�), as a function of � and �, for
p = 1, by evaluating them on a fine grid [0,⇡] ⇥ [0,⇡].
Fig. 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the
lowest expectation value, (�exp,�exp), and those result-
ing in the highest success probability, (�succ,�succ), are
approximately the same. In fact |�exp � �succ| ' 0 and
|�exp��succ| ' 0.047. Note that this is not obvious, since
QAOA only minimizes the expectation value, and does
not explicitly maximize the success probability; a low
expectation value does not necessarily translates onto a
high success probability. For example, consider a vari-
ational state that is a linear combination of low energy
excited eigenstates of the cost Hamiltonian. This state
could potentially have a low expectation value while the
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This means that the implementation of gate sequences can be, and has been, done at �,�>D�Z^͛ 
HPC as well as at FZJ. Therefore, as far as QChem is concerned, there is no need for transferring 

quantum circuit gate lists to FZJ. Instead we specify instances to be run at different workstations and 

HPC for comparison.  

2 Description of Activities 

2.1 Introduction 

During the first 12 months CHALMERS focused on training activities, learning QISKit and reproducing 

the ground state energies of H2, LiH, BeH2, Li2 and H2O single molecules with minimal basis sets. 

During months 12-18 CHALMERS has concentrated on the central OSQ objectives: ground state 

energies of single molecules of water (H2O) and hydrogen cyanide (HCN), as well as of the nitrogen 

(N2) molecule. Through interaction with IBMZ, Chalmers got access to upgraded QISKit code [4] 

implementing state-of-the-art reduction of qubit and gate resources. This now makes it possible to 

work with water clusters and HCN derivatives in useful applications executed on HPC quantum 

simulators.� 

2.2 Methodology 

At CHALMERS we have implemented the Python-based QISKit-aqua-chemistry software package 

[5,6] on local workstations and on the C3SE HPC at CHALMERS, setting up and performing ground-

state calculations for water (H2O) and hydrogen cyanide (HCN) using the Variational Quantum 

Eigensolver (VQE) [8]:  

(i) Constructing the Hamiltonian and a parametrized trial wave function;  

(ii) Evaluating the expectation value (energy) of the Hamiltonian;  

(iii) Updating the parameters to minimise the energy.  

The first and third are performed on a classical computer, while the second /step (2) is performed on 

a quantum computer (real or simulated).  

 

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle: 

 

       
 

The VQE is a classical-quantum hybrid algorithm where the trial function _\�T�! is created in the 

qubit register by gate operations. In a fully quantum HW calculation of the expectation value, the 

energy is estimated via quantum state tomography of each of the Pauli operator products of Hi. In 

quantum simulations on an HPC, the state vector is available classically, and the expectation value of 

H can be evaluated directly. The VQE scales badly for large molecules (due to repeated 

measurements/tomography to form the expectation value of the Hamiltonian, <H>. Nevertheless, 

the VQE is the common approach for small molecules with present NISQ HW. The phase-estimation 

algorithm (PEA) scales better, but involves much deeper circuits, and puts much higher demands on 

the coherence time of the q-register. 

 
The main steps in our VQE calculations are as follows: 

We start from a unitary coupled cluster (UCC) ansatz of the quantum state _\�T�!�with variational 

parameter T��

HPCQC

Quantum variational methods

Quantum Variational Eigensolver (VQE) Quantum Approximate Optimization
Algorithm (QAOA)

2 sides of the same coin
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We illustrate the VQE in some detail by showing how it works for the 2-electron hydrogen molecule. 
The fermionic operators in the Hamiltonian  
 

 
are transformed into products of Pauli operators that can operate on qubits while conserving the 
anticommutation rules  
 

 
or explicitly (renaming the Pauli operators):  
 

 
 
The electron correlation part is particularly simple because there are no exchange terms.  
 
The UCCSD approximation creates the trial function via double excitations from the Hartree-Fock 
(HF) mean-field reference state |01>, building-in electron pair-correlation effects.  

 
 
The Hartree-Fock reference state |01> is created through a bit flip operation:  X0|00> -->>|01>. The 
core of the UCCSD-generating quantum circuit is given by a CNOT, a parametrised Rz(T) rotation, and 
another CNOT (Fig.2(a)), generating the unitary operator in Fig.2(b): 
 

                        
 
Figure 2:         (a)        (b)     
 
The desired form in the UCCSD ansatz for _\�T�!�is obtained by additional 1q Pauli rotation gates (Fig. 
3): 
 

         
 
 Figure 3. The Variational Quantum Eigensolver (VQE) for H2 (adapted from [9]).  
 
Fig. 3 describes the measurement approach, needed for experimental implementations. However, 
since we are simulating the ideal quantum HW on an HPC, the required gate list to describe the 
quantum state vector does not involve the tomographic Rt gates and the final measurements. The 
expectation value <H> is evaluated directly via matrix operations. 

Qchem, fermionic, qubitization Ising, qubits

Rayleigh-Ritz

Quantum state tomography

Evaluate cost 
function 

Update 
parameters

Quantum circuit 
trial function       à
(HPC-generated)

Quantum variational methods

a1 |00000> +
a2 |00001> +
a3 |00010> +
a4 |00011> +
…………….. +
an |11111> 

n = 25 = 32
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FIG. 1: Quantum circuits for operator exponentiation: (a) e�iqs1zs2z ; (b) e�iqs1zs2zs3z

The fermionic operators c+i and ci in the molecular Hamiltonian

Ĥ = Â
pq

hpqc+p cq +
1
2 Â

pqrs
hpqrsc+p c+q crcs (5)

must also be expanded in products of Pauli spin-operators using one transformation of the listed above, namely JW, BK and
Parity, resulting in the generic interaction form:

Ĥ = Â
ia

hia sia + Â
ia, jb

hia, jb sia s jb + Â
ia, jb ,kg

hia, jb ,kg sia s jb skg + ....... (6)

where sia corresponds to the Pauli matrix sa for a 2 {0,x,y,z}, acting on the i-th qubit.
In practice, we start from a classical HF description and remove states that have the wrong spin and do not conserve the

number of electrons (tapering, Z2-symmetry [9, 10]). After fermion-to-spin operator Parity mapping we then Trotterize the
UCC-operator (Eq. 2).

The expectation value of the Hamiltonian Âi Ĥi can then be calculated in two ways: (1) State-vector approach: direct calcu-
lation of Âi hy|Ĥi|yi by matrix operations (Qiskit state-vector backend); (2) Measurement approach: generating an ensemble
of identical trial states and measuring the Pauli operators of the Hamiltonian terms Ĥi (QASM backend; or experimental q-HW
backends).

As a simplest possible example, in the case of the 2-electron hydrogen molecule (i = 1,2), one gets:

Ĥ = g01+g1s10 +g2s20 +g3s10s20 +g4s1xs2x +g5s1ys2y (7)

where g1 �g5 are coefficients describing the weights of the terms in the transformed Hamiltonian. The UCCSD approximation
creates the trial function via double excitations from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron
pair-correlation effects:

|y(q)i= Û(q)
��yre f

↵
= e�iqs1xs2y |01i (8)

The Hartree-Fock reference state |01> is created through a bit flip operation: s1z|00i! |01i. The UCCSD-generating quantum
circuit is given by a CNOT, a parametrized Rz(q) rotation, and another CNOT, generating the unitary operator in Fig. 1(a). The
desired form in the UCCSD ansatz for |y(q)i in Eq. 2 is obtained by additional single-qubit rotation gates. In general, for
systems with more that 2 electrons, the ansatz and the Hamiltonian will involve products with operators involving more than two
qubits. A product of 3 operators is shown in Fig. 1(b) and is generalized to exponents with tensor products of Pauli operators for
n qubits, which generates quantum circuits with n-qubit operations.

In the H2-case there is only one single variational parameter, and the optimization of the energy is trivial. For larger molecules,
the number of UCCSD variational parameters can be very large (see Tables I-IV), and the optimization loop becomes classically
intractable.

In summary, our practical approach is as follows:

• Basic program package: VQE implemented by Qiskit Aqua [9].

• Initial/reference state: Hartree-Fock (HF) provided by PySCF.

• HF wave-functions calculated in general with a Pople minimal orbital basis STO-6G. However, to achieve higher accuracy,
in several cases we used 6-31G, and in a few cases 6-31+G* and 6-31++G*. Those basis sets give better accuracy, but
also require a much greater number of qubits.

• Variational ansatz: Trotterized Unitary Coupled Cluster Singles and Doubles (UCCSD). We have chosen to systematically
use the UCCSD, rather than experimenting with "hardware-efficient" trial functions [12]. UCCSD represents a funda-
mental QChem benchmark, providing a systematic approximation of many-electron correlations beyond the Hartree-Fock
mean-field level. In our view, the UCCSD is an important starting point for developing HW-efficient approaches.

2

molecules, like nitrogen, N2. Computing the ground state energy of N2 with 12 qubits and a few thousand 2-qubit gates should
be possible in the near future with NISQ hardware (HW).

The case of HCN is a bit more challenging for real HW, currently needing 15 qubits and 33 000 2-qubit gates already with a
minimal basis set. However, the number of gates and time-to-solution can certainly be reduced with lower demands for accuracy.
This may be useful for exploring larger systems and approximate implementations on physical HW. Note that minimal basis sets
are of no interest if one wants to challenge modern quantum chemistry. In the case of H2O, the present work demonstrates that a
better basis set (Pople 6-31G) requires 20 qubits. For HCN, the 6-31G basis set increases the number of qubits to 33, with 3000
variational parameters and over 600000 gates. This quantum simulation cannot be handled by any high-performance computer
(HPC) today. This is remarkable in the light of that an HPC can easily solve the same problem using modern quantum chemistry
methods.

II. METHODS

We have implemented the Python-based Qiskit software package [9, 10] on local workstations and clusters, setting up and
performing ground-state calculations for water (H2O) and hydrogen cyanide (HCN), as well as for several related molecules and
radicals, using the Variational Quantum Eigensolver (VQE) [11]: (1) Constructing the Hamiltonian Ĥ and a parametrized trial
wave function |y(q)i; (2) Evaluating the energy E of the state |y(q)i, i.e. the expectation value of the Hamiltonian Ĥ; (3)
Updating the parameters q = (q1,q2, . . . ,qm) to minimise the energy E. The first and third steps are performed on a classical
computer, while the second step is performed on a simulated QC.

The Variational Quantum Eigensolver (VQE) implements the Rayleigh-Ritz variational principle for analysing the energy E
for a quatum state |yi with respect to the ground state energy E0 of a given Hamiltonian Ĥ:

E = hy|Ĥ|yi � E0; Ĥ = Â
i

Ĥi (1)

The VQE is a classical-quantum hybrid algorithm where the trial function |yi is created in the qubit register by gate operations.
In a fully quantum HW calculation of the expectation value, the energy is estimated via quantum state tomography of each of the
Pauli operator products of Ĥi. In quantum simulations on an HPC, the state vector is available classically, and the expectation
value of H can be evaluated directly. The VQE scales poorly for large molecules due to repeated measurements/tomography
to form the expectation value of the Hamiltonian terms, hy|Ĥi|yi. Nevertheless, the VQE is the common approach for small
molecules with present NISQ HW. The phase-estimation algorithm (PEA) scales better, but involves much deeper circuits, and
puts much higher demands on the coherence time of the quantum register [3, 4].

The main steps in our VQE calculations are in principle as follows: We start from a unitary coupled cluster (UCC) ansatz of
the quantum state |yi with variational parameter |qi:

|y(q)i= Û(q)
��yre f

↵
= eT (q)�T (q)† ��yre f

↵
(2)

where
��yre f

↵
is, in our approach, the Hartree-Fock (HF) ground state. The ansatz can be expanded:

T (q) = T1 +T2 +T3 + ....+TN (3)

producing 1,2,3, ....,N electron-hole pairs from the N-electron reference state. Explicitly, for T1 and T2:

T1 = Â
pq

t(q)pq c+p cq; T2 = Â
pqrs

t(q)pqrs c+p c+q crcs (4)

with c+i and ci, fermionic creation and annihilation operators, respectively. The series of terms generates in principle all possible
configurations for FCI, producing all possible ground and excited state correlations. The terms shown generate single (S)
and double (D) excitations and produce the parametrized UCCSD trial-state approximation that we are using. In particular
t(q)pq = qi and t(q)pqrs = q j for all combinations of the indices pqrs.

The UCCSD trial-function |y(q)i with fermionic operators must now be mapped onto qubit spin operators. Common trans-
formations are the Jordan-Wigner (JW), Bravyi-Kitaev (BK) and Parity encodings, all designed to impose the anticommutation
rules. The original UCCSD exponential is then expanded into exponentials of large numbers of products of Paul spin-operators
acting on qubits. The parametrized initial trial state is finally constructed through entangled quantum circuits: combinations of
parametrized single-qubit rotation gates and entangling CNOT gates (Fig. 1). All this results in a state vector |y(q)i for the trial
state.
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FIG. 1: Quantum circuits for operator exponentiation: (a) e�iqs1zs2z ; (b) e�iqs1zs2zs3z

The fermionic operators c+i and ci in the molecular Hamiltonian

Ĥ = Â
pq

hpqc+p cq +
1
2 Â

pqrs
hpqrsc+p c+q crcs (5)

must also be expanded in products of Pauli spin-operators using one transformation of the listed above, namely JW, BK and
Parity, resulting in the generic interaction form:

Ĥ = Â
ia

hia sia + Â
ia, jb

hia, jb sia s jb + Â
ia, jb ,kg

hia, jb ,kg sia s jb skg + ....... (6)

where sia corresponds to the Pauli matrix sa for a 2 {0,x,y,z}, acting on the i-th qubit.
In practice, we start from a classical HF description and remove states that have the wrong spin and do not conserve the

number of electrons (tapering, Z2-symmetry [9, 10]). After fermion-to-spin operator Parity mapping we then Trotterize the
UCC-operator (Eq. 2).

The expectation value of the Hamiltonian Âi Ĥi can then be calculated in two ways: (1) State-vector approach: direct calcu-
lation of Âi hy|Ĥi|yi by matrix operations (Qiskit state-vector backend); (2) Measurement approach: generating an ensemble
of identical trial states and measuring the Pauli operators of the Hamiltonian terms Ĥi (QASM backend; or experimental q-HW
backends).

As a simplest possible example, in the case of the 2-electron hydrogen molecule (i = 1,2), one gets:

Ĥ = g01+g1s10 +g2s20 +g3s10s20 +g4s1xs2x +g5s1ys2y (7)

where g1 �g5 are coefficients describing the weights of the terms in the transformed Hamiltonian. The UCCSD approximation
creates the trial function via double excitations from the Hartree-Fock (HF) mean-field reference state |01>, building-in electron
pair-correlation effects:

|y(q)i= Û(q)
��yre f

↵
= e�iqs1xs2y |01i (8)

The Hartree-Fock reference state |01> is created through a bit flip operation: s1z|00i! |01i. The UCCSD-generating quantum
circuit is given by a CNOT, a parametrized Rz(q) rotation, and another CNOT, generating the unitary operator in Fig. 1(a). The
desired form in the UCCSD ansatz for |y(q)i in Eq. 2 is obtained by additional single-qubit rotation gates. In general, for
systems with more that 2 electrons, the ansatz and the Hamiltonian will involve products with operators involving more than two
qubits. A product of 3 operators is shown in Fig. 1(b) and is generalized to exponents with tensor products of Pauli operators for
n qubits, which generates quantum circuits with n-qubit operations.

In the H2-case there is only one single variational parameter, and the optimization of the energy is trivial. For larger molecules,
the number of UCCSD variational parameters can be very large (see Tables I-IV), and the optimization loop becomes classically
intractable.

In summary, our practical approach is as follows:

• Basic program package: VQE implemented by Qiskit Aqua [9].

• Initial/reference state: Hartree-Fock (HF) provided by PySCF.

• HF wave-functions calculated in general with a Pople minimal orbital basis STO-6G. However, to achieve higher accuracy,
in several cases we used 6-31G, and in a few cases 6-31+G* and 6-31++G*. Those basis sets give better accuracy, but
also require a much greater number of qubits.

• Variational ansatz: Trotterized Unitary Coupled Cluster Singles and Doubles (UCCSD). We have chosen to systematically
use the UCCSD, rather than experimenting with "hardware-efficient" trial functions [12]. UCCSD represents a funda-
mental QChem benchmark, providing a systematic approximation of many-electron correlations beyond the Hartree-Fock
mean-field level. In our view, the UCCSD is an important starting point for developing HW-efficient approaches.

Quantum Approximate
Optimization Algorithm
(QAOA)

Quantum Variational 
Eigensolver
(VQE)

with expectation value:

< Ĥ > =
X

i↵

hi↵ < �i↵ > +
X

i↵,j�

hi↵,j� < �i↵�j� > +.... (93)

The coe�cients are determined using a classical quantum chemistry package.

The expectation value of a tensor product < �i↵�j��k�..... > of an arbitrary number

of Pauli operators can be estimated by local measurement of each qubit [?], independent

measurements that can be performed in parallel. The advantage of this approach [?] is

then that the coherence time to make a single measurement after preparing the state is

O(1). The disadvantage relative to the PEA is that the scaling in the total number of

operations as a function of the desired precision is quadratically worse [?]. The scaling

will also reflect the number of state preparation repetitions required, whereas in PEA

the number of state preparation steps is constant.

In the end, however, the QEE dramatically reduces the coherence time requirement,

while maintaining an exponential advantage over the classical case by adding only a

polynomial number of repetitions with respect to QPE [?].

2.0.1. Quantum variational eigensolver The quantum variational eigensolver (QVE)

[?] is based on the Ritz variational principle, finding the minimum of the expectation

value of the Hamiltonian under variation of the trial state function: (i) prepare the trial

state | i; (ii) compute the Rayleigh-Ritz quotient < Hi >= h |Ĥi| i/h || i of all the
terms in the Hamiltonian using the QEE as a subroutine; (iii) calculate

P
i i >; (iv)

compare the resulting energy with the previous runs and feed back new parameters for

the trial state. Note that the only step that is quantum is step (iii) - the other steps

are prepared using a classical computer.

E = h |Ĥ| i/h || i � E0; Ĥ =
P

i Ĥi

x

E(✓) = h (✓)|Ĥ| (✓)i � E0; Ĥ =
P

i Ĥi

x

| (✓)i = eT (✓)�T (✓)† | refi (94)

x

| i = eT�T
† | refi (95)

x

T (✓) = T1 + T2 + T3 + ....+ TN (96)
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Background for L2 and exercises: Teleportation

Exemplifies:
- Quantum circuits
- 1q Hadamard gate
- Superposition
- 2q CNOT (XOR)
- Entanglement
- Coding– decoding
- Intro to quantum error correction (QEC)



Example: Teleportation

Bell state;
entangled
pair

3-qubit
entangled
states

k,n=0,1

“Alice”

“Bob”

Teleportation



Quantum Teleportation

(|0> + |1>) |0> = |00>+|10> 
CNOT(|00>+|10>) = (|00>+|11>  

00 -> 00
01 -> 01
10 -> 11
11--> 10

Teleportation - Bell state generation



Quantum Teleportation

a|000> + b|111> 

Teleportation – entangling input state with Bell state



Example: Teleportation

a|000> + b|111> 

Teleportation – decoding entangled state + meas’t + restoring (Bob)



Quantum Error Correction (QEC)

Coding

Parity
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Error
Bit-flip

Correction

FPGA
electronics

Quantum Error Correction - QEC



Quantum Error Correction - QEC




