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Motivation

Quantum chemistry calculations are promising early applications of
quantum computers

Materials science simulations involve periodic systems and large
numbers of atoms

Current focus: Quantum-centric supercomputers with quantum
accelerators

Need for hybrid quantum-classical approaches for practical
applications
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Why Quantum Computing for Materials?

Large solid-state systems require approximations in DFT

Quantum computing can improve accuracy for critical subsystems

Quantum embedding approach similar to QM/MM methods

Potential for better description of electron correlation
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Our Approach - Core Methodology

Simplify the problem and consider Aluminum substrate instead of
alloys

Approach the problem from DFT simulation workflow

Introduce quantum computer as accelerator to the workflow

Build Hybrid quantum-classical computational framework

Focus on surface-adsorbate interactions
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Workflow Overview
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Workflow with Example System
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Problem Simplification

Figure: Simplifying the system from alloy to pure aluminum substrate
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Research Goals

Demonstrate hybrid quantum-classical calculations for materials

Study binding energy of inhibitor molecules on metal surfaces

Compare classical DFT with quantum-enhanced calculations

Establish workflow for quantum-centric supercomputing
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Classical DFT Approach

Periodic DFT calculations using CP2K

System: Al(111) surface with triazole inhibitor

Geometry optimization using ML potentials
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Case Study: Corrosion Inhibition

Study of 1,2,4-triazole molecule on Al(111) surface

Focus on metal-inhibitor interaction

Goal: Calculate binding energy accurately
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System Setup

4×4 Al(111) supercell

PBE functional with D3
dispersion correction

DZVP-MOLOPT-GTH basis
sets
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Computational Details

GPW method (500 Ry plane-wave cutoff)

Periodic boundary conditions with 25 Å vacuum gap

Fermi-Dirac distribution (1000 K electronic temperature)

DFT-D3 dispersion correction for van der Waals interactions
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Workflow Steps

1 Supercell generation with ASE

2 Geometry optimization with ML potentials

3 DFT calculations for periodic system

4 Binding energy calculation:

Ebinding = Esupercell − (Esubstrate + Einhibitor)
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Quantum Computing Implementation

Active space embedding approach

ADAPT-VQE algorithm with UCCSD ansatz

2 electrons in 5 orbitals active space

Gradient threshold: 1e-4

DFT embedding convergence: 1E-6
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Active Space Configuration

Self-consistent field (SCF) embedding

Orbital selection: Canonical (energy-ordered)

Maximum iterations: 100

Full GPW method for electron repulsion integrals

Periodic boundary conditions maintained
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Integration Strategy

Socket-based communication between CP2K and Qiskit

FCIDUMP format for integral transfer

Multiple VQE implementations:

Standard VQE with UCCSD
AdaptVQE with dynamic ansatz
StatefulVQE with warm-starting
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Optimizer Configuration

SPSA optimizer settings:

Maximum iterations: 1000
Learning rate: 0.005
Perturbation: 0.05

Convergence criteria for embedding iterations

Active space solver: Qiskit
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Binding Energy Results

Method Binding Energy (eV) Distance (Å)

Classical DFT -0.385512 3.54
AdaptVQE -0.385508 3.54
Vanilla VQE -2.325986 3.54
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Analysis

AdaptVQE shows excellent agreement with classical DFT

Vanilla VQE shows significant deviation

Binding distance remains consistent across methods

Active space size limitations affect accuracy
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Future Work

Expand active space to include more orbitals

Implement error mitigation techniques

Improve convergence of AdaptVQE algorithm

Study larger molecular systems

Integration with quantum centric supercomputers
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Conclusions

Successfully demonstrated hybrid quantum-classical workflow

AdaptVQE proves more robust than vanilla VQE

Current limitations:

Active space size
Convergence challenges
Hardware constraints

Promising path for quantum-accelerated materials science
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