Quantum Computing for Materials Science quantum computer as another accelerator to HPC

Karim Elgammal

QAS2024

December 2, 2024

Karim Elgammal (QAS2024)

Quantum Computing for Materials

December 2, 2024

Overview

Karim Elgammal (QAS2024)

Quantum Computing for Materials

イロト イボト イヨト イヨト

э

Motivation

- Quantum chemistry calculations are promising early applications of quantum computers
- Materials science simulations involve periodic systems and large numbers of atoms
- Current focus: Quantum-centric supercomputers with quantum accelerators
- Need for hybrid quantum-classical approaches for practical applications

Why Quantum Computing for Materials?

- Large solid-state systems require approximations in DFT
- Quantum computing can improve accuracy for critical subsystems
- Quantum embedding approach similar to QM/MM methods
- Potential for better description of electron correlation

Our Approach - Core Methodology

- Simplify the problem and consider Aluminum substrate instead of alloys
- Approach the problem from DFT simulation workflow
- Introduce quantum computer as accelerator to the workflow
- Build Hybrid quantum-classical computational framework
- Focus on surface-adsorbate interactions

Workflow Overview

Karim Elgammal (QAS2024)

Quantum Computing for Materials

December 2, 2024

<ロト < 同ト < ヨト < ヨト

Workflow with Example System

Karim Elgammal (QAS2024)

Quantum Computing for Materials

December 2, 2024

7/22

Problem Simplification

Figure: Simplifying the system from alloy to pure aluminum substrate

December 2, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

- Demonstrate hybrid quantum-classical calculations for materials
- Study binding energy of inhibitor molecules on metal surfaces
- Compare classical DFT with quantum-enhanced calculations
- Establish workflow for quantum-centric supercomputing

Classical DFT Approach

- Periodic DFT calculations using CP2K
- System: Al(111) surface with triazole inhibitor
- Geometry optimization using ML potentials

Karim Elgammal (QAS2024)

Quantum Computing for Materials

December 2, 2024

∃ ► < ∃ ►</p>

Case Study: Corrosion Inhibition

- Study of 1,2,4-triazole molecule on Al(111) surface
- Focus on metal-inhibitor interaction
- Goal: Calculate binding energy accurately

System Setup

- 4×4 Al(111) supercell
- PBE functional with D3 dispersion correction
- DZVP-MOLOPT-GTH basis sets

- GPW method (500 Ry plane-wave cutoff)
- Periodic boundary conditions with 25 Å vacuum gap
- Fermi-Dirac distribution (1000 K electronic temperature)
- DFT-D3 dispersion correction for van der Waals interactions

Workflow Steps

- Supercell generation with ASE
- Geometry optimization with ML potentials
- OFT calculations for periodic system
- Inding energy calculation:

$$E_{\text{binding}} = E_{\text{supercell}} - (E_{\text{substrate}} + E_{\text{inhibitor}})$$

Karim Elgammal (QAS2024)

- A - E - N

Quantum Computing Implementation

- Active space embedding approach
- ADAPT-VQE algorithm with UCCSD ansatz
- 2 electrons in 5 orbitals active space
- Gradient threshold: 1e-4
- DFT embedding convergence: 1E-6

Active Space Configuration

- Self-consistent field (SCF) embedding
- Orbital selection: Canonical (energy-ordered)
- Maximum iterations: 100
- Full GPW method for electron repulsion integrals
- Periodic boundary conditions maintained

医下 化医下口

Integration Strategy

- Socket-based communication between CP2K and Qiskit
- FCIDUMP format for integral transfer
- Multiple VQE implementations:
 - Standard VQE with UCCSD
 - AdaptVQE with dynamic ansatz
 - StatefulVQE with warm-starting

3 🕨 🖌 3 🕨

Optimizer Configuration

- SPSA optimizer settings:
 - Maximum iterations: 1000
 - Learning rate: 0.005
 - Perturbation: 0.05
- Convergence criteria for embedding iterations
- Active space solver: Qiskit

Binding Energy Results

Method	Binding Energy (eV)	Distance (Å)
Classical DFT	-0.385512	3.54
AdaptVQE	-0.385508	3.54
Vanilla VQE	-2.325986	3.54

Karim Elgammal (QAS2024)

Quantum Computing for Materials

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 December 2, 2024

3

- AdaptVQE shows excellent agreement with classical DFT
- Vanilla VQE shows significant deviation
- Binding distance remains consistent across methods
- Active space size limitations affect accuracy

- Expand active space to include more orbitals
- Implement error mitigation techniques
- Improve convergence of AdaptVQE algorithm
- Study larger molecular systems
- Integration with quantum centric supercomputers

- Successfully demonstrated hybrid quantum-classical workflow
- AdaptVQE proves more robust than vanilla VQE
- Current limitations:
 - Active space size
 - Convergence challenges
 - Hardware constraints
- Promising path for quantum-accelerated materials science

3 k 4 3 k -

э