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Dirac/"Bra-ket” notation

common notation for quantum states i.e. vectors in a complex Hilbert space V

|) denotes a vector in a vector space V

(| denotes a linear functional on V, i.e. is an element of V*
e we can identify a vector ("ket”) with a linear functional ("bra”) and vice versa

{|y : V x V — C denotes the inner product
|) (| : VX V— V& V denotes the outer product
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A quantum bit

e A quantum bit (qubit) is a quantum mechanical system with a two-dimensional state
space. A state |®) is a unit vector in C2.

e Given an orthonormal basis |po) , |©1), (typically:
lpo) = [0) = (1,0)T,|¢1) = |1) = (0, 1)T), a qubit can be written as

|®) = ag |po) + a1 |¢1), with ag,a; € Cand |ag|* + |a;|> = 1. (1)
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A quantum bit

e A quantum bit (qubit) is a quantum mechanical system with a two-dimensional state
space. A state |®) is a unit vector in C2.

e Given an orthonormal basis |po) , |©1), (typically:
lpo) = [0) = (1,0)T,|¢1) = |1) = (0, 1)T), a qubit can be written as

|®) = ag |po) + a1 |¢1), with ag,a; € Cand |ag|* + |a;|> = 1. (1)

¢ |n contrast to classical mechanics, a superposition of basis states is possible. An
example is the state |®) = —% |0) + i% |1).
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Multiple qubits

The general state |®) of n qubits is a unit vector in (C?)®" = C? ® - - - ® C2.
| ———

n times
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Multiple qubits

The general state |®) of n qubits is a unit vector in (C?)®" = C? ® - - - ® C2.
| ———
n times
Using the standard basis for C?, a basis for (C?)®" is given by the following 2" vectors

o _ _ T
|0),, :=100...00) =[0) ®[0) ®---®[0) ®]0) = (1,0 ... 0,0)
n digits
1), :=100...01) = [0)® |[0) ®---®|0) ® |1) = (0,1 ... 0,0)"
n digits (2)

— _ _ T
2" —-1),=[11...11) = ) ®[1)®---@|1)®]|1) = (0,0 ... 0,1)
n digits
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Multiple qubits

A general state can therefore be expressed as

Co
1 C1 n—1
@)= aly=| : [, Y la’=1 caeC (3)
i—0 Con_3 i=0
Con_1q
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Multiple qubits

A general state can therefore be expressed as

Co
1 C1 n—1
@)= aly=| : [, Y la’=1 caeC (3)
i—0 Con_3 i=0
Con_1q

Remark.
e The space ((C2)®" is a 2"-dimensional space. The dimension grows exponentially
with the number of qubits.
e The state space of n classical bits, i.e., a binary string {0, 1}" is an n-dimensional
space. The dimension grows linearly with the number of bits.
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Product states and entanglement
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Product states and entanglement

A quantum state |®) € (C2)®" is a product state if it can be expressed as a tensor
product of n single qubits |®;), i.e.,

B) = |21) © - ® [@n) (@)

L
n times

Otherwise, it is entangled.

Examples.

e Product state: % (]00) +|01) + |10) + [11)) = % (10) +11)) ® % (10) + 1))

¢ Entangled state: % (100) +|11))

SINTEF



Important states and conventions

e Two-qubit Bell states
2 (|00) + [11))
L (00) — [11))
L (/01) + |10))
2L (01) - |10))
(They form a maximally entangled basis, known as the Bell basis, of the
four-dimensional Hilbert space for two qubits.)
e Superposition states
+) = 75 (10) +11))
-) =7 (0) = 1))

SINTEF



Operations on qubits

An operation applied by a quantum computer, which is also called a gate, to n qubits is a
unitary matrix U € C2"*2",

e A matrix is U unitary, if UTU = UUT = L.

e Unitary matrices are norm-preserving, i.e., ||U |®) || = || |®) ||. This means that we
get back a quantum state, which is a unit vector.

e Quantum operations are linear.

e Quantum operations are reversible.
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Examples of 1 qubit gates

1 (1 1
f 1 -1

H? =LH[0) = [+),H|1) = |-) ,H|+) = |0) , H|-) = [1).
e PauligatesX = o, = <(i) é) We have that

X?=1X|0) =[1),X[1) = [0) ,X|+) = [+) . X|-) = = |-).
e PauligatesY = o, = ((1) l) We have that Y2 =1, Y |[0) =i |1),Y]|1) = —i|0).

e Hadamard gate H = ) We have that

e PauligatesZ = o, = <(1) 1> We have that 22 = ,Z|0) = |0),Z|1) = — [1).
) 1 O
e Phase shift gates Rg = 0 ei®

e Square root of NOT gate vX = % <i T : 11+ 1) We have that vXv/X = X.
- @ SINTEF



Examples of 2 qubit gates

1 0 0O e
e controlled not gate CNOT = CX = 0 100 =

0 001 —b—

0 010

It has the effect
CNOT |00) = |00) ,CNOT |01) = |01) ,CNOT |10) = |11) ,CNOT |11) = |10).
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Examples of 2 qubit gates

1 000 e
e controlled not gate CNOT = CX = 0 100 =

0 001 —b—

0 010

It has the effect
CNOT |00) = |00) ,CNOT |01) = |01) ,CNOT |10) = |11) ,CNOT |11) = |10).

0 0
0 0 B
Upo Uo1

uijo Uil

e controlled U gate CU =

O OO
o O = O
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Observables

e Anobservable H is a self-adjoint operator on the Hilbert space C®™.
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Observables

e Anobservable H is a self-adjoint operator on the Hilbert space C®™.
e Spectral theorem: 3 orthonormal basis {|¢) }; of C®" consisting of eigenvectors of
H, and all eigenvalues \; are real.
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Observables

e Anobservable H is a self-adjoint operator on the Hilbert space C®™.

e Spectral theorem: 3 orthonormal basis {|¢) }; of C®" consisting of eigenvectors of
H, and all eigenvalues \; are real.

e Wecanwrite: H =), \; [¢1) (¢
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Observables

An observable H is a self-adjoint operator on the Hilbert space C*".
Spectral theorem: 3 orthonormal basis {|¢;) }; of C®" consisting of eigenvectors of
H, and all eigenvalues \; are real.
We can write: H = ), A; [¢1) (]
Physicist call eigenvalues of a Hamiltonian energies.
- amounts of energy the system can have
- typically order from smallest to largest, \; < Ay < -+ < A,
To each energy ) corresponds to an energy elgenstate
- ground state energy eigenstate |v;) corresponding to the lowest energy
- first excited state, second excited state, ...: [v5) , |v3),
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Observables

An observable H is a self-adjoint operator on the Hilbert space C*".
Spectral theorem: 3 orthonormal basis {|¢;) }; of C®" consisting of eigenvectors of
H, and all eigenvalues \; are real.
We can write: H = ), A; [¢1) (]
Physicist call eigenvalues of a Hamiltonian energies.
- amounts of energy the system can have
- typically order from smallest to largest, \; < Ay < --- < Ap.
To each energy ) corresponds to an energy elgenstate
- ground state energy eigenstate |v;) corresponding to the lowest energy
- first excited state, second excited state, ...: [v5) ,|v3), ...

Electron sitting in the lowest shell is in the ground state
First excited state has the electron in the next shell up '
10 SINTEF



Expectation values

Given
e astate |¢) and
e anobservable H
Then the expectation value of H in the state |¢) is given by

<H>|¢> = (¢[H|9)
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Expectation values

Given
e astate |¢) and
e an observable H

Then the expectation value of H in the state |¢) is given by

<H>|¢> = (¢[H|9)

It follows:

(H)py = (9] Z)\i |1h1) (il@) = ZAi (i)

SINTEF



Expectation values

Given
e astate |¢) and
e anobservable H
Then the expectation value of H in the state |¢) is given by

<H>|¢> = (¢[H|9)

It follows:

(H)py = (9] Z)\i |1h1) (il@) = ZAi (i)

Particularly: (H),y = Ai
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The variational principle

(H) gy = Z il ()
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The variational principle

(H) gy = ZAi [(Ble)]* > Z)\min (@) |
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The variational principle

(H) gy = Z)\i [(Ble)]* > Z)\min (@l = Amin
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The variational principle

(H) gy = Z)\i [(Ble)]* > Z)\min (@l = Amin

e H can encode a problem as ground state
e Prepare parametrized state |1)(0))
e Find 0" s.t. | (H) 4(g+y — Amin| minimal
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The variational principle

(H)jy = SO 2 D7 Amin (140" = Arin

e Hcan encode a problem as ground state
e Prepare parametrized state [1/(0))
e Find 0% st. | (H) 4(9+) — Amin| minimal
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Overview Hybrid Quantum Classical Solvers

Op?mlzahon problemui Hamiltonian > |
I ® w» =
0 ) R -

/ . <

Prepare trial state

Measure

optimize

Quantum chemistry problem

Classical Device:
Calculate cost function
Update control parameters
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Quantum Chemistry

potential energy

=2

distance

hp.q(x aaq+ g hp.q.rs(X) a aras—i—hnuc
pqrs

(8)
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Combinatorial optimization: MaxCut

e Given a graph G = (V, E) consisting of vertices V and V={0,1,2,3,4}
edges E with weights w;j > 0, for (i,j) € E. E ={(0,1,1.0),(0,2,2.0),

(0,3,1.0),(0,4,2.0),
(1,3,1.0),(3,2,4.0),
(2,4,3.0)}




Combinatorial optimization: MaxCut

e Given a graph G = (V, E) consisting of vertices V and
edges E with weights w;j > 0, for (i,j) € E.

e A cutis defined as a partition of the vertices V into two
disjoint subsets S, S.

e The cost function to be maximized is the sum of weights
of edges with vertices in the two different subsets.

vV ={0,1,2,3,4}

E ={(0,1,1.0),(0,2,2.0),
(0,3,1.0),(0,4,2.0),
(1,3,1.0),(3,2,4.0),
(2,4,3.0)}




Combinatorial optimization: MaxCut

e Given a graph G = (V, E) consisting of vertices V and
edges E with weights w;j > 0, for (i,j) € E.

e A cutis defined as a partition of the vertices V into two
disjoint subsets S, S.

e The cost function to be maximized is the sum of weights
of edges with vertices in the two different subsets.

{—1, if edgeiisinset S

. , then the cost function
+1, otherwise

Assign x; =

is given by

vV ={0,1,2,3,4}

E ={(0,1,1.0),(0,2,2.0),
(0,3,1.0),(0,4,2.0),
(1,3,1.0),(3,2,4.0),
(2,4,3.0)}




Example
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Example
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Example
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Smallest case
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Smallest case

e For each vertex we define |x;)

5

0) =

)

1) =

)

—_ O O =
N—— —

if vertexi € §

if vertexi € S
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Smallest case

1 . .
|0) = o) if vertexi € §
e For each vertex we define |x;) = 0
1) = e if vertexi € §
1 0
e Observe that for o, = o -1)" have 0, |0) = |0), 0 [1) = —[1),

SINTEF



Smallest case

—

1 . .

|0) = o) if vertexi € §
e For each vertex we define |x;) = 0

1) = e if vertexi € §

1 O
e Observe that for o, = o —-1)" have 0, [0) = [0), 0 [1) = — 1),
e Hamiltonian
H=177

has ground states |01), |10)

(10)
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MaxCut for general graph

Remember that the cost function is given by

= Wu — XiXj)

(ij)€E

e The Hamiltonian encoding our problem is therefore

where I"™ denotes the identity matrix in (C2)®™

(12)
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QUBO

In general any QUBO
xTAx + bTx + ¢ — min

can be formulated as an Ising-Hamiltonian by the transformation

1 .
XIHE(I*O';)

(13)
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20

The adiabatic theorem

"A physical system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum.”
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The adiabatic theorem

"A physical system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum.”

Consider a time dependent Hamiltonian

H(t) = <at ‘ > (15)

a —ot

A2 = £y/a? + (at)? (16)

The probability of a diabatic transition is
given by (Landau-Zener)

Pp = e2*/Ia (17)

20




Quantum annealing

HQA(S> = (1 — l')HB + tHe,

e Choose Hp s.t. ground state easy to prepare

e Choose H¢ s.t. ground state encodes solution

21
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Quantum annealing

Hoa(s) = (1 —t)Hp + tH, (18)

e Choose Hp s.t. ground state easy to prepare

e Choose H¢ s.t. ground state encodes solution

e run time of the algorithm typically scales as O(1/A2. ), where
Amin = mingeo 11(A2(t) — A1(t)) is the minimum spectral gap.

e |t turns out that for hard instances, Anin is exponentially small with respect to the
problem size.
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H(t) = (1 - £)(—X) + tZ

Eigenvalues:
Al ==+ 2t2 — 2t + 1

1 T \/
0.5

< 0

—0.5 ¢
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H(t) = (1 - £)(—X) + tZ

Eigenvalues:

A2 =

1 A
0.5
< 0

—0.5 ¢

22

+v2t2 -2t + 1

\/

0 0.5 1

Eigenvectors:
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weighted MaxCut

e Hcis sum of |E| local terms
e H¢ is a diagonal matrix
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weighted MaxCut

Ho= Y %wi i (1-oidl) (19)

(j,k)€E

Hc is sum of |E| local terms

H¢ is a diagonal matrix

Hp= > o (20)

i€nodes

Hpg has only off-diagonal non-zero entries

Hpg induces a swap operation between neighboring qubits, and thus can move the
excitation around for the purpose of state transfer

SINTEF
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How to find quantum gates for QA?

We need to find gates for
e~ iHoa(s)

)

where
Hoa(s) = —(sH¢+ (1 —s)Hg), s=t/T

(21)

(22)
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Matrix exponentials

If Hy, Hy are matrices (Hamiltonians), then

eH1+H2 75 eHl eHz

)

except when H; and Hy commute, i.e., HiHy = HoH;.
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Matrix exponentials

If Hy, Hy are matrices (Hamiltonians), then
H1+H2 75 eHl Hz (23)

except when H; and Hy commute, i.e., HiHy = HoH;.
Trotterization, (Lie-Trotter-Suzuki product formula[Trotter(1959), Suzuki(1976)])

2
p—i(HI+Ha)t _ (e—lHre_,Hz,) Lo <t > (2
n

First and second order versions
e—i(H1+H2)t _ e—iHlte—int 4 O (tZ)

e—i(H1+H2)t _ e—iHlt/Ze—inte—iHlt/Z + 0 (t3) (25)
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Overall QAOA

1. Using 2p parameters y = v1,...,7, 8 = B1, ..., Bp, prepare state
|\IJ(7’ 5)> = UBpUCp "‘UBlUCI |+>®n> (26)

where the operators have the explicit form

n :
Up, = e~ BiHE _ H e—iﬂwﬁ(7
=1 ‘ (27)
Ug = e~ iAHe _ H e—iWWj,k/z(I—OJzUi()’
(j,k)€E

2. Obtain (¥ (v, 8)|He|¥ (7, 5)).
3. Run an outer, classical, optimization loop to find v, 8 that minimizes the expectation
value (¥(v, B)|He|¥ (v, B)).

26 SINTEF



How to obtain the expectation value

H¢ is a diagonal Hamiltonian, and we have that

He= Y Cx)X){x (28)
xe{0,1}n
Therefore,
(Up(F, B)HIY, (@, B)) = (Up(7,8)] Y. CRIX)EI[Ty(d,F))
xe{0,1}n
= Y C(TF AR T B) = D Cxp)
xe{0,1}" xe{0,1}"
(29)

SINTEF
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How to implement with gates efficiently?

j-th qubit
—inwjk/2(I-0%ok) -
e MWk %z) can be implemented as k-th qubit & Rz(—’Yle,k) &
e Observe that e ™%ix/2l is 3 global phase and can be ignored
[ )
1 0 0 O 1 0 0 O
01 00|/10 e /2 0 0100
(EU@RO)X) =15 ¢ ¢ 1 (0 1>®< 0 ei9/2> 0001
0 010 0 010
e /2 0 0 0
- 0 €2 0 0 _—i0/20,0,
"l o o e o |T°
—i0/2
28 0 0 0 e ® SINTEF
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How to implement with gates efficiently?

e~ "X can be implemented as  j-th qubit ——| Ry(23) —

([ cos(0/2) —isin(0/2)
Rx(0) = <—isin(9/2) cos(6/2) )

(31)
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How to implement with gates efficiently?

e~ BX can be implemented as j-th qubit Re(25) |—

Rx(0) = ( cos(6/2) isin(0/2)>

—isin(0/2)  cos(0/2) (31)

2 —— Xm(m) — @ SINTEF
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Types of approaches

Solving NP hard optimization problems.

e Calculating the cost of all partitions takes exponential time.
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Types of approaches

Solving NP hard optimization problems.
e Calculating the cost of all partitions takes exponential time.

e Heuristic algorithms. No polynomial run time guarantee; appear to perform well on
some instances.

SINTEF



30

Types of approaches

Solving NP hard optimization problems.
e Calculating the cost of all partitions takes exponential time.

e Heuristic algorithms. No polynomial run time guarantee; appear to perform well on
some instances.

e Approximate algorithms. Efficient and provide provable guarantees.
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Types of approaches

Solving NP hard optimization problems.
e Calculating the cost of all partitions takes exponential time.

e Heuristic algorithms. No polynomial run time guarantee; appear to perform well on
some instances.

e Approximate algorithms. Efficient and provide provable guarantees.
With high probability we get a solution x* such that

C(x*) — miny C(x)
maxy C(x) — min, C(x) —

where 0 < v < 1 is the approximation ratio.
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Example graph
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Random sampling

0.25
0.2
0.15
0.1+

5.1072 -
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QAOA depth =1

0.5
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QAOA depth =2

0.5
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QAOA depth =3

0.5
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QAOA depth =4

0.5
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QAOA depth =5

0.5
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QAOA depth =6

0.5
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QAOA depth =7

0.5
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QAOA depth =8

0.5
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P

QAOA depth =9

0.5
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QAOA depth =10

0.5
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QAOA depth =11

0.5

SINTEF



44

QAOA depth =12

0.5

SINTEF



45

QAOA depth =13

0.5

SINTEF



46

QAOA depth =14

0.5
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QAOA depth =15

0.5

SINTEF



48

QAOA depth =16

0.5
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QAOA depth =17

0.5
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QAOA depth =18

0.5
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QAOA depth =19

0.5
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QAOA depth = 20

0.5

SINTEF



53

Global continuous optimization problem

Hamiltonian

original problem — minimize cost (6 0)|Al|p(0)

YEYY
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Hands-on lectures with a price!

Gemini-senter

o [l

SINTEF
NTNU

UiO ¢

Univarsity of Qsio

Quantum Computing
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